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Abstract 

The aim of this project was to investigate synaptic organization in optic glomeruli of the 

insect visual system. The research is based on the premise that each glomerulus receives an 

ensemble of small field neurons from the lobula that encodes a specific low-order visual 

primitive. The expectation is that more complex parameters of visual space are computed 

by interactions amongst glomeruli via local interneurons that then transmit this data 

selectively to premotor channels (descending neurons) that control flight initiation, 

direction and targeting. The present project focuses on synaptic organization of glomeruli, 

comparing this arrangement with glomeruli in the antennal lobe system for which there is 

much data available. The nature of this research requires enormous investment in time 

using serial section electron microscopy as well as patch clamp recording from local 

interneurons, the smallest neurons in the fly brain. 
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1.0 ELECTRON MICROSCOPY AND CIRCUIT ANALYSIS 

Comparison of antennal lobe glomeruli with optic glomeruli. 
Identification of segmental homology.  

Electron microscopical analyses of sensory inputs to antennal lobe glomeruli and optic lobe 

glomeruli demonstrate close correspondence of organization into functional subunits – the 

glomeruli themselves – and synaptic organization within them. These features suggest that 

despite different sensory modalities, a common circuit ground pattern exists in each 

segment of the central nervous system. Antennal lobe glomeruli receive their inputs from 

olfactory sensory neurons, the population of which is subdivided into receptor types defined 

by their tuning to specific airborne ligands, the odorants. This tuning is due to each sensory 

neuron type defined by its own genetically determined receptor molecule that recognizes a 

limited cohort of odorant molecules. Converging axons from a subset of functionally 

identical olfactory sensory neurons provide a “labeled line” that targets one specific 

glomerulus. Each glomerulus therefore receives the terminals of a set of olfactory sensory 

neurons encoding a specific “olfactory primitive.” There are as many glomeruli as there are 

molecular types of olfactory sensory neurons, which translate to there being as many 

glomeruli as olfactory primitives detected by the receptor system as a whole. Insects with 

very few glomeruli detect very few odorants; insects with hundreds of glomeruli detect 

hundreds of odorants. 

Optic glomeruli are similarly organized and likely reflect a similar principle: the number of 

glomeruli relates to the number of different visual primitives encoded by the lobula. Each 

glomerulus receives its input from the lobula via a set of retinotopic columnar neurons, the 

dendrites of which relate to a specific combination of relays from the retina, lamina, and 

medulla. Studies of the source of optic glomerular inputs (the lobula) show that medulla 

relays segregate to discrete levels where they provide presynaptic terminals onto the layered 

dendrites of lobula outputs (Figs.1, 2). 

In the antennal lobe, the reconstruction of an odor, which is a blend of primary odorants, is 

computed amongst glomeruli by local interneurons that then relay this higher order data to 

neurons that reach various targets in the brain, including the mushroom bodies. Anatomical 

studies of optic glomeruli show that local interneurons likewise connect different glomeruli. 

Recordings from relay neurons from the optic glomerular complex reveal that these encode 

more specific and elaborate parameters of visual space, such as shapes and colors, than 

those supplying the optic glomerular complex from the lobula (Strausfeld et al., 2007; Mu 

et al., 2012). Current recordings from local interneurons – the smallest cells in the brain – 

using patch clamp recordings on genetically identified cells, reveal that these encode 

parameters derived from several glomeruli (see section 2.1., below). 



3 

 

Distribution A 
 

 

Figure 1 Antennal lobe and optic lobe comparison. A. Sensory input to antennal lobe 

glomeruli and optic lobe glomeruli demonstrates segmental homology. Antennal lobe 

glomeruli (A) receive segregated inputs from odortypic antennal receptors. Optic 

glomeruli (B) receive segregated inputs from the lobula via visuotypic columnar cells. C. 

3-dimensional reconstruction of the antennal lobe of Nasonia vitripennis was created from 

102, 2µm serial histological sections. There are 259 antennal lobe glomeruli that were 

individually identified, traced and reconstructed using Amira software. This number 

corresponds to the number of identified odorant receptor genes (301), including 76 

pseudogenes (Robertson et al. 2010). D. 3-dimensional reconstruction of the optic 

glomeruli of Nasonia vitripennis; it is estimated there are 33 optic glomeruli, located 

within the lateral protocerebrum. Medulla and lobula optic neuropils are indicated. E, F. 

Comparisons of transmission electron micrographs of an antennal lobe glomerulus (E) 

and an optic glomerulus (F) demonstrate their clear morphological similarities. Both 

glomeruli are discretely identifiable due to the glial border. F. Tracts of neurons from the 

lobula (arrows) provide input to glomeruli. Three distinct categories of neurons can be 

identified within the glomerulus; presynaptic profiles with dense cytoplasm, presynaptic 

profiles with clear cytoplasm, and a population of small round profiles, interpreted as 

local interneurons. A is from Strausfeld, 2012. 

Three-dimensional reconstructions of the antennal lobe and optic glomerular complexes of 

Nasonia vitripennis were generated from over a hundred 2µm-thick serial sections. It is 

proposed that circuitry of the optic glomeruli follows the same labeled line principle, with 
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site-specific optic glomeruli each receiving a uniquely defined output from the lobula. 

Thirty-three optic glomeruli located within the lateral protocerebrum (compared with 27 in 

Calliphora, Strausfeld & Okamura 2007) suggest that this minute hymenopteran 

reconstructs at least 33 low level visual primitives. 

 

Figure 2 Nasonia vitripennis lobula. The lobula complex is involved in higher 

processing of both motion detection and color vision pathways. Retinotopic neurons 

from the medulla sort out by type in the lobula (left, in panel A), each type targeting a 

specific level of columnar neuron dendrites (in rectangle; shown enlarged in panel B). 

Axons from these subunits extend to optic glomeruli. (see: Strausfeld & Okamura 2007, 

Okamura & Strausfeld 2007). Scale bars, A; 2 µm, B; 1µm. 

High-resolution studies of optic glomeruli reveal three morphologically distinct populations 

of profiles that correspond to input neurons, local interneurons, and output neurons. These 

three distinct categories of neurons can be identified within each glomerulus; presynaptic 

profiles with dense cytoplasm; pre- and postsynaptic synaptic profiles with clear cytoplasm, 

and populations of small round profiles, interpreted as local interneurons that are both pre-

and postsynaptic (Fig. 3). This type of circuit may encode translational invariance, with 

separate networks encoding object recognition, object position, and feedback loops that 

provide information about where such recognition has occurred within the retinotopic 

system. 

Electrophysiological studies are being performed on Drosophila, because genetic 

expression of green fluorescent protein provides identification of cell types in the living fly, 

which can be then patched. However, our circuitry studies using electron microscopy focus 

on the far smaller parasitoid N. vitripennis. This is because size, or the lack of it, matters. 

Small is a special advantage for EM work. Fortunately, surveys of the whole brain of N. 

vitripennis (Brown and Strausfeld, in revision) show that it does not depart from the normal 

ground pattern of brain organization, which means that circuit organization in Nasonia 

conforms to those of large species. 
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Figure 3. N. vitripennis optic glomerulus. Left panel: Optic glomeruli are discretely 

identifiable due to their glial borders, and as in the olfactory glomeruli, they have elaborate 

internal architectures. Tracts of neurons from the lobula (arrows) provide sensory input to 

site-specific glomeruli. Right panel: Same image, with colors indicating the 3 populations 

of neurons that characterize a glomerulus; green – local interneurons, purple – 

presynaptic profiles of lobula output terminals, with dense cytoplasm (see also insets, 

panel to the right); and orange – presynaptic clear cytoplasm. Local interneurons and 

projection neurons provide integrative circuitry within and among glomeruli. Optic 

glomeruli are also supplied by processes from regions of the brain associated with 

sensory modalities other than vision, suggesting that optic glomeruli are integrative 

centers provided with information about behavioral decisions. Scale bars inset 0.5µm.
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2.0  ELECTROPHYSIOLOGICAL ANALYSIS OF THE OPTIC 
GLOMERULAR COMPLEX 

2.1 Responses of local interneurons. 

The results of three years of research on the functional relationship between lobula outputs, 

the optic glomerular complex, and premotor descending neurons have been published in 

2012 (Mu et al., 2012). Here we show an example of a further and deeper analysis of a local 

interneuron that supports the premise that this class of neurons plays cardinal roles in 

further reconstructing the visual scene (Fig. 4). Recordings like these, from Drosophila, 

provide further evidence that integration by local neurons in the optic glomerular complex 

parallels that known from studies of the antennal glomeruli. In both systems, local 

interneurons reassemble the sensory scene, and it might be speculated that similar circuits 

amongst sensory domains in thoracic ganglia likewise assemble and encode dynamic 

changes and fluctuations in mechanosensory space. 

 

Figure 4. Optic glomerulus local interneuron in Drosophila. The neuron links 

glomeruli receiving inputs from groups of LC neurons. The neuron (panel A) 

integrates subtle signals and displays strong responses to specific visual stimuli. Panel 

B: responses to expansion and retraction of a black square. Expansion initiates strong 

depolarization; contraction initiates a weak depolarization (asterisks). Panel C. The 

interneuron has stronger response to the “off” signal than “on,” as suggested by responses 

to slow full-field flicker where the size of depolarization initiated by light “off” 

stimulus is larger than to light “on.” Panel D. The interneuron shows directional 

selectivity to a single bar motion (horizontal motion, front to back) but not to square 

wave grating motion (panel 1E). Response adaptation during looming stimulus is not 

obvious for the preferred direction of single bar motion, where sizes of depolarization 

in three cycles are similar (indicated by asterisks in Fig. 1D). Scale bars: 2 mV/500 ms 

in B and C; 2 mV/1s in D, E. 
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2.2 A model descending neuron: testing multimodal integration.  

Because green fluorescent protein (GFP) was not exclusively expressed in the giant fiber 

in our Drosophila lines, we have used streptavidin:Cy3 to visualize Giant descending 

neurons (the “Giant Fiber” GF) after backfilling them with biocytin during intracellular 

recording. The contralateral giant commissural interneurons connecting the left and right 

ventrolateral protocerebrum sometimes were also labeled, together with the GF, which is 

consistent with previous dye backfilled results. All of the visual and mechanical stimuli 

used alone fail to initiate action potentials in the GF of Drosophila. Nevertheless, the GF 

did show responses (subthreshold depolarization or hyperpolarization) to various unimodal 

stimuli. Moreover, current injection was able to initiate action potential in those GF. 

This reluctance to spike reflects a typical characteristic of command neurons mediating 

rapid behavioral responses, such as GF. 

In previous studies, we reported that the GF responds to looming stimulus (Mu et al., 

2012). We have further examined GF responses to different types of looming stimuli (Fig. 

5). We used three types of looming stimulus, including a black-square expanding on the 

bright background, a bright-square expanding on the black background, and a chessboard 

square expanding on the bright background. As reported before, the black- square 

looming stimulus initiates depolarization response whereas white-square looming and the 

chessboard-square looming do not. This suggests that using the black-square looming 

stimulus, the GF is responding to decreasing luminance other than fast expanding edges. 

When given a continuous looming stimulus, the responses of GF quickly adapted in 

some flies but not in others. We also tested the GF responses to looming stimuli at 

different expanding speeds, which did show significant difference between high speed 

looming and low speed looming. 
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Figure 5. Giant fiber descending neuron response to visual and mechanical stimuli. 

(A) Light OFF elicits a large EPSP; light ON elicits depolarization or hyperpolarization. 

Response intensity to light OFF relates to preceding light ON (B). In most of cases using 

slow flicker (0.5Hz) only the first ON and OFF phases initiate an obvious response (C). 

10Hz flicker stimulus initiate no noticeable EPSP or IPSP whereas light OFF following 

the end of flicker initiates depolarization (C). Black-square looming stimulus initiates 

depolarization (E, F). Continuous looming stimulus results in fast GF adaptation in some 

(E) but not other flies (F). GF responses to looming stimuli at different expanding 

speeds (G) show significant differences between high speed and low speed looming 

(ANOVA, p<0.05, 20o/s and 40o/s vs 80o/s and 100o/s). Air puff stimuli to the antennae 

elicit a large EPSP at stimulus start (H) and sometimes at termination (I). Responses 

following initial EPSP vary: membrane potential can maintain at its depolarization state 

throughout the whole stimulus (H), or more small EPSPs are elicited than during the 

resting state. In other examples, the membrane potentials drop close to that of resting (I). 

The GF variously adapts to a continuous of air puff stimuli (J). All scale bars indicate 

2mV/1s. 

In Drosophila, both looming (approaching object) and light “OFF” can initiate escape 

behavior. Although it has long been postulated that the GF is responsible for both escape 

behaviors, recent studies found different motor sequences in those two escape behaviors 

and imply another neural pathway underlying “looming” initiated escape instead of the GF 

pathway (Fotowat et al, 2009). Our results did not provide direct evidence supporting the 

GF’s executive role in “looming” initiated escape behavior. However, subthreshold 

wehling 

D:20130810232728-05'00'8/10/2013 10:27:28 
PM 
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responses of GF to black-square looming stimulus might contribute to leg and wing 

extension prior to the final jump movement. Moreover, the mixed responses of GF to varied 

visual stimulus suggest that underlying neural circuits that provide visual inputs to GF are 

complex and presynaptic modulation by other modalities might cause varied responses. 

Studies on larger flies than Drosophila show that the GF responds to mechanical stimuli to 

the antenna (Bacon and Strausfeld, 1986). Additionally, the GF in Drosophila showed 

responses to courtship song (Tootoonian et al., 2012). We examined how the GF responds 

to air puff applied to its antennae (Fig. 5). Our results showed that this stimulus elicits a 

large excitatory postsynaptic potential (EPSP) at the beginning of the stimulus, and, 

occasionally at the end of stimulus. Responses following the initial large EPSP are varied; 

sometimes the membrane potential is maintained at the depolarization state through the 

whole air puff phase; other times there are more small EPSPs emerged during air puff 

stimulus than during the resting state. In other examples, the membrane potentials fall close 

to that of the resting state. The GF also shows varied adaptive responses to a continuous of 

air puff stimuli. However, the size of the EPSP responding to the onset of the first air puff is 

larger than those of the following air puff stimuli in all of cases. 
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